Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Life Sci ; 295: 120411, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1683412

RESUMEN

AIMS: Virus-infected host cells switch their metabolism to a more glycolytic phenotype, required for new virion synthesis and packaging. Therefore, we investigated the effect and mechanistic action of glycolytic inhibitor 2-Deoxy-d-glucose (2-DG) on virus multiplication in host cells following SARS-CoV-2 infection. MAIN METHODS: SARS-CoV-2 induced change in glycolysis was examined in Vero E6 cells. Effect of 2-DG on virus multiplication was evaluated by RT-PCR (N and RdRp genes) analysis, protein expression analysis of Nucleocapsid (N) and Spike (S) proteins and visual indication of cytopathy effect (CPE), The mass spectrometry analysis was performed to examine the 2-DG induced change in glycosylation status of receptor binding domain (RBD) in SARS-CoV-2 spike protein. KEY FINDINGS: We observed SARS-COV-2 infection induced increased glucose influx and glycolysis, resulting in selectively high accumulation of the fluorescent glucose analog, 2-NBDG in Vero E6 cells. 2-DG inhibited glycolysis, reduced virus multiplication and alleviated cells from virus-induced cytopathic effect (CPE) in SARS-CoV-2 infected cells. The progeny virions produced from 2-DG treated cells were found unglycosylated at crucial N-glycosites (N331 and N343) of the receptor-binding domain (RBD) in the spike protein, resulting in production of defective progeny virions with compromised infective potential. SIGNIFICANCE: The mechanistic study revealed that the inhibition of SARS-COV-2 multiplication is attributed to 2-DG induced glycolysis inhibition and possibly un-glycosylation of the spike protein, also. Therefore, based on its previous human trials in different types of Cancer and Herpes patients, it could be a potential molecule to study in COVID-19 patients.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Desoxiglucosa/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , Adenosina Trifosfato/metabolismo , Animales , Antivirales/farmacología , COVID-19/metabolismo , COVID-19/virología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Glicosilación , Interacciones Huésped-Patógeno/efectos de los fármacos , Manosa/farmacología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Virión/efectos de los fármacos , Virión/patogenicidad , Replicación Viral/efectos de los fármacos
2.
Viruses ; 14(1)2022 01 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1614009

RESUMEN

Photodynamic inactivation (PDI) employs a photosensitizer, light, and oxygen to create a local burst of reactive oxygen species (ROS) that can inactivate microorganisms. The botanical extract PhytoQuinTM is a powerful photosensitizer with antimicrobial properties. We previously demonstrated that photoactivated PhytoQuin also has antiviral properties against herpes simplex viruses and adenoviruses in a dose-dependent manner across a broad range of sub-cytotoxic concentrations. Here, we report that human coronaviruses (HCoVs) are also susceptible to photodynamic inactivation. Photoactivated-PhytoQuin inhibited the replication of the alphacoronavirus HCoV-229E and the betacoronavirus HCoV-OC43 in cultured cells across a range of sub-cytotoxic doses. This antiviral effect was light-dependent, as we observed minimal antiviral effect of PhytoQuin in the absence of photoactivation. Using RNase protection assays, we observed that PDI disrupted HCoV particle integrity allowing for the digestion of viral RNA by exogenous ribonucleases. Using lentiviruses pseudotyped with the SARS-CoV-2 Spike (S) protein, we once again observed a strong, light-dependent antiviral effect of PhytoQuin, which prevented S-mediated entry into human cells. We also observed that PhytoQuin PDI altered S protein electrophoretic mobility. The PhytoQuin constituent emodin displayed equivalent light-dependent antiviral activity to PhytoQuin in matched-dose experiments, indicating that it plays a central role in PhytoQuin PDI against CoVs. Together, these findings demonstrate that HCoV lipid envelopes and proteins are damaged by PhytoQuin PDI and expands the list of susceptible viruses.


Asunto(s)
Antivirales/farmacología , Coronavirus/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Inactivación de Virus/efectos de los fármacos , Animales , Antivirales/efectos de la radiación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cricetinae , Emodina/farmacología , Emodina/efectos de la radiación , Humanos , Luz , Fármacos Fotosensibilizantes/efectos de la radiación , Extractos Vegetales/farmacología , Extractos Vegetales/efectos de la radiación , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Virión/efectos de los fármacos
3.
J Cell Mol Med ; 26(1): 25-34, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1570773

RESUMEN

Transmission electron microscopy has historically been indispensable for virology research, as it offers unique insight into virus function. In the past decade, as cryo-electron microscopy (cryo-EM) has matured and become more accessible, we have been able to peer into the structure of viruses at the atomic level and understand how they interact with the host cell, with drugs or with antibodies. Perhaps, there was no time in recent history where cryo-EM was more needed, as SARS-CoV-2 has spread around the globe, causing millions of deaths and almost unquantifiable economic devastation. In this concise review, we aim to mark the most important contributions of cryo-EM to understanding the structure and function of SARS-CoV-2 proteins, from surface spikes to the virus core and from virus-receptor interactions to antibody binding.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , Anticuerpos Antivirales/química , Vacunas contra la COVID-19/química , COVID-19/prevención & control , Receptores Virales/química , Glicoproteína de la Espiga del Coronavirus/química , Enzima Convertidora de Angiotensina 2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Antivirales/biosíntesis , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/biosíntesis , Microscopía por Crioelectrón , Epítopos/química , Epítopos/inmunología , Epítopos/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Receptores Virales/inmunología , Receptores Virales/metabolismo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad , SARS-CoV-2/ultraestructura , Serina Endopeptidasas/química , Serina Endopeptidasas/inmunología , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Virión/efectos de los fármacos , Virión/patogenicidad , Virión/ultraestructura
4.
Viruses ; 13(12)2021 12 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1554971

RESUMEN

Epidemic RNA viruses seem to arise year after year leading to countless infections and devastating disease. SARS-CoV-2 is the most recent of these viruses, but there will undoubtedly be more to come. While effective SARS-CoV-2 vaccines are being deployed, one approach that is still missing is effective antivirals that can be used at the onset of infections and therefore prevent pandemics. Here, we screened FDA-approved compounds against SARS-CoV-2. We found that atovaquone, a pyrimidine biosynthesis inhibitor, is able to reduce SARS-CoV-2 infection in human lung cells. In addition, we found that berberine chloride, a plant-based compound used in holistic medicine, was able to inhibit SARS-CoV-2 infection in cells through direct interaction with the virion. Taken together, these studies highlight potential avenues of antiviral development to block emerging viruses. Such proactive approaches, conducted well before the next pandemic, will be essential to have drugs ready for when the next emerging virus hits.


Asunto(s)
Antivirales/farmacología , Atovacuona/farmacología , Berberina/farmacología , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Células Epiteliales Alveolares , Animales , Berberina/química , Proliferación Celular/efectos de los fármacos , Cloruros/química , Cloruros/farmacología , Chlorocebus aethiops , Sinergismo Farmacológico , Humanos , Proguanil/farmacología , Células Vero , Virión/efectos de los fármacos
5.
Virus Res ; 305: 198555, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1412516

RESUMEN

Inactivated viral preparations are important resources in vaccine and antisera industry. Of the many vaccines that are being developed against COVID-19, inactivated whole-virus vaccines are also considered effective. ß-propiolactone (BPL) is a widely used chemical inactivator of several viruses. Here, we analyze various concentrations of BPL to effectively inactivate SARS-CoV-2 and their effects on the biochemical properties of the virion particles. BPL at 1:2000 (v/v) concentrations effectively inactivated SARS-CoV-2. However, higher BPL concentrations resulted in the loss of both protein content as well as the antigenic integrity of the structural proteins. Higher concentrations also caused substantial aggregation of the virion particles possibly resulting in insufficient inactivation, and a loss in antigenic potential. We also identify that the viral RNA content in the culture supernatants can be a direct indicator of their antigenic content. Our findings may have important implications in the vaccine and antisera industry during COVID-19 pandemic.


Asunto(s)
Antivirales/farmacología , Vacunas contra la COVID-19/química , Propiolactona/farmacología , SARS-CoV-2/efectos de los fármacos , Virión/efectos de los fármacos , Inactivación de Virus/efectos de los fármacos , Animales , Antígenos Virales/química , Antígenos Virales/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Chlorocebus aethiops , Floculación/efectos de los fármacos , Humanos , Sueros Inmunes/química , ARN Viral/química , ARN Viral/inmunología , SARS-CoV-2/química , SARS-CoV-2/inmunología , Vacunas de Productos Inactivados , Células Vero , Virión/química , Virión/inmunología
6.
PLoS Pathog ; 17(9): e1009898, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1394564

RESUMEN

The respiratory disease COVID-19 is caused by the coronavirus SARS-CoV-2. Here we report the discovery of ethacridine as a potent drug against SARS-CoV-2 (EC50 ~ 0.08 µM). Ethacridine was identified via high-throughput screening of an FDA-approved drug library in living cells using a fluorescence assay. Plaque assays, RT-PCR and immunofluorescence imaging at various stages of viral infection demonstrate that the main mode of action of ethacridine is through inactivation of viral particles, preventing their binding to the host cells. Consistently, ethacridine is effective in various cell types, including primary human nasal epithelial cells that are cultured in an air-liquid interface. Taken together, our work identifies a promising, potent, and new use of the old drug via a distinct mode of action for inhibiting SARS-CoV-2.


Asunto(s)
Antivirales/farmacología , Etacridina/farmacología , Inhibidores de Proteasas/farmacología , Activación Viral/efectos de los fármacos , Animales , Línea Celular , Chlorocebus aethiops , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Humanos , Células Vero , Virión/efectos de los fármacos , Replicación Viral/efectos de los fármacos
7.
PLoS One ; 16(6): e0253489, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1388925

RESUMEN

In the pursuit of suitable and effective solutions to SARS-CoV-2 infection, we investigated the efficacy of several phenolic compounds in controlling key cellular mechanisms involved in its infectivity. The way the SARS-CoV-2 virus infects the cell is a complex process and comprises four main stages: attachment to the cognate receptor, cellular entry, replication and cellular egress. Since, this is a multi-part process, it creates many opportunities to develop effective interventions. Targeting binding of the virus to the host receptor in order to prevent its entry has been of particular interest. Here, we provide experimental evidence that, among 56 tested polyphenols, including plant extracts, brazilin, theaflavin-3,3'-digallate, and curcumin displayed the highest binding with the receptor-binding domain of spike protein, inhibiting viral attachment to the human angiotensin-converting enzyme 2 receptor, and thus cellular entry of pseudo-typed SARS-CoV-2 virions. Both, theaflavin-3,3'-digallate at 25 µg/ml and curcumin above 10 µg/ml concentration, showed binding with the angiotensin-converting enzyme 2 receptor reducing at the same time its activity in both cell-free and cell-based assays. Our study also demonstrates that brazilin and theaflavin-3,3'-digallate, and to a still greater extent, curcumin, decrease the activity of transmembrane serine protease 2 both in cell-free and cell-based assays. Similar pattern was observed with cathepsin L, although only theaflavin-3,3'-digallate showed a modest diminution of cathepsin L expression at protein level. Finally, each of these three compounds moderately increased endosomal/lysosomal pH. In conclusion, this study demonstrates pleiotropic anti-SARS-CoV-2 efficacy of specific polyphenols and their prospects for further scientific and clinical investigations.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/prevención & control , Polifenoles/farmacología , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos , Células A549 , Benzopiranos/farmacología , Biflavonoides/farmacología , COVID-19/virología , Catequina/análogos & derivados , Catequina/farmacología , Supervivencia Celular/efectos de los fármacos , Curcumina/farmacología , Humanos , Unión Proteica/efectos de los fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Virión/efectos de los fármacos , Virión/metabolismo , Virión/fisiología , Acoplamiento Viral/efectos de los fármacos
8.
Pharmacol Res ; 158: 104850, 2020 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1318927

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread worldwide through person-to-person contact, causing a public health emergency of international concern. At present, there is no specific antiviral treatment recommended for SARS-CoV-2 infection. Liu Shen capsule (LS), a traditional Chinese medicine, has been proven to have a wide spectrum of pharmacological properties, such as anti-inflammatory, antiviral and immunomodulatory activities. However, little is known about the antiviral effect of LS against SARS-CoV-2. Herein, the study was designed to investigate the antiviral activity of SARS-CoV-2 and its potential effect in regulating the host's immune response. The inhibitory effect of LS against SARS-CoV-2 replication in Vero E6 cells was evaluated by using the cytopathic effect (CPE) and plaque reduction assay. The number of virions of SARS-CoV-2 was observed under transmission electron microscope after treatment with LS. Proinflammatory cytokine expression levels upon SARS-CoV-2 infection in Huh-7 cells were measured by real-time quantitative PCR assays. The results showed that LS could significantly inhibit SARS-CoV-2 replication in Vero E6 cells, and reduce the number of virus particles and it could markedly reduce pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß, IL-8, CCL-2/MCP-1 and CXCL-10/IP-10) production at the mRNA levels. Moreover, the expression of the key proteins in the NF-κB/MAPK signaling pathway was detected by western blot and it was found that LS could inhibit the expression of p-NF-κB p65, p-IκBα and p-p38 MAPK, while increasing the expression of IκBα. These findings indicate that LS could inhibit SARS-CoV-2 virus infection via downregulating the expression of inflammatory cytokines induced virus and regulating the activity of NF-κB/MAPK signaling pathway in vitro, making its promising candidate treatment for controlling COVID-19 disease.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Mezclas Complejas/farmacología , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Animales , Antiinflamatorios/farmacología , Antivirales/farmacología , COVID-19 , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Humanos , Mediadores de Inflamación/metabolismo , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Virión/efectos de los fármacos
9.
Int J Mol Sci ; 22(8)2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1206368

RESUMEN

Viral infections cause a host of fatal diseases and seriously affect every form of life from bacteria to humans. Although most viral infections can receive appropriate treatment thereby limiting damage to life and livelihood with modern medicine and early diagnosis, new types of viral infections are continuously emerging that need to be properly and timely treated. As time is the most important factor in the progress of many deadly viral diseases, early detection becomes of paramount importance for effective treatment. Aptamers are small oligonucleotide molecules made by the systematic evolution of ligands by exponential enrichment (SELEX). Aptamers are characterized by being able to specifically bind to a target, much like antibodies. However, unlike antibodies, aptamers are easily synthesized, modified, and are able to target a wider range of substances, including proteins and carbohydrates. With these advantages in mind, many studies on aptamer-based viral diagnosis and treatments are currently in progress. The use of aptamers for viral diagnosis requires a system that recognizes the binding of viral molecules to aptamers in samples of blood, serum, plasma, or in virus-infected cells. From a therapeutic perspective, aptamers target viral particles or host cell receptors to prevent the interaction between the virus and host cells or target intracellular viral proteins to interrupt the life cycle of the virus within infected cells. In this paper, we review recent attempts to use aptamers for the diagnosis and treatment of various viral infections.


Asunto(s)
Antivirales/uso terapéutico , Aptámeros de Nucleótidos/uso terapéutico , Virosis/diagnóstico , Virosis/tratamiento farmacológico , Animales , Virus ADN/efectos de los fármacos , Humanos , Virus ARN/efectos de los fármacos , Proteínas Virales/efectos de los fármacos , Virión/efectos de los fármacos
10.
Bioessays ; 43(6): e2000312, 2021 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1184571

RESUMEN

Biocidal agents such as formaldehyde and glutaraldehyde are able to inactivate several coronaviruses including SARS-CoV-2. In this article, an insight into one mechanism for the inactivation of these viruses by those two agents is presented, based on analysis of previous observations during electron microscopic examination of several members of the orthocoronavirinae subfamily, including the new virus SARS-CoV-2. This inactivation is proposed to occur through Schiff base reaction-induced conformational changes in the spike glycoprotein leading to its disruption or breakage, which can prevent binding of the virus to cellular receptors. Also, a new prophylactic and therapeutic measure against SARS-CoV-2 using acetoacetate is proposed, suggesting that it could similarly break the viral spike through Schiff base reaction with lysines of the spike protein. This measure needs to be confirmed experimentally before consideration. In addition, a new line of research is proposed to help find a broad-spectrum antivirus against several members of this subfamily.


Asunto(s)
Desinfectantes/farmacología , Cuerpos Cetónicos/farmacología , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Antivirales/química , Antivirales/farmacología , Desinfectantes/química , Formaldehído/química , Formaldehído/farmacología , Glutaral/química , Glutaral/farmacología , Humanos , Cuerpos Cetónicos/química , Cuerpos Cetónicos/metabolismo , Cetosis/etiología , Cetosis/virología , SARS-CoV-2/patogenicidad , Virión/efectos de los fármacos , Virión/patogenicidad
11.
Viruses ; 12(10)2020 09 29.
Artículo en Inglés | MEDLINE | ID: covidwho-906373

RESUMEN

The Gammacoronavirus infectious bronchitis virus (IBV) causes a highly contagious and economically important respiratory disease in poultry. In the laboratory, most IBV strains are restricted to replication in ex vivo organ cultures or in ovo and do not replicate in cell culture, making the study of their basic virology difficult. Entry of IBV into cells is facilitated by the large glycoprotein on the surface of the virion, the spike (S) protein, comprised of S1 and S2 subunits. Previous research showed that the S2' cleavage site is responsible for the extended tropism of the IBV Beaudette strain. This study aims to investigate whether protease treatment can extend the tropism of other IBV strains. Here we demonstrate that the addition of exogenous trypsin during IBV propagation in cell culture results in significantly increased viral titres. Using a panel of IBV strains, exhibiting varied tropisms, the effects of spike cleavage on entry and replication were assessed by serial passage cell culture in the presence of trypsin. Replication could be maintained over serial passages, indicating that the addition of exogenous protease is sufficient to overcome the barrier to infection. Mutations were identified in both S1 and S2 subunits following serial passage in cell culture. This work provides a proof of concept that exogenous proteases can remove the barrier to IBV replication in otherwise non-permissive cells, providing a platform for further study of elusive field strains and enabling sustainable vaccine production in vitro.


Asunto(s)
Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Virus de la Bronquitis Infecciosa/efectos de los fármacos , Virus de la Bronquitis Infecciosa/fisiología , Tripsina/uso terapéutico , Tropismo Viral/efectos de los fármacos , Animales , Línea Celular , Chlorocebus aethiops , Gammacoronavirus/efectos de los fármacos , Virus de la Bronquitis Infecciosa/metabolismo , Cinética , Pase Seriado , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Proteínas del Envoltorio Viral/metabolismo , Virión/efectos de los fármacos , Virión/metabolismo , Replicación Viral/efectos de los fármacos
12.
Structure ; 28(11): 1218-1224.e4, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: covidwho-872505

RESUMEN

The ongoing global pandemic of coronavirus disease 2019 (COVID-19) resulted from the outbreak of SARS-CoV-2 in December 2019. Currently, multiple efforts are being made to rapidly develop vaccines and treatments to fight COVID-19. Current vaccine candidates use inactivated SARS-CoV-2 viruses; therefore, it is important to understand the architecture of inactivated SARS-CoV-2. We have genetically and structurally characterized ß-propiolactone-inactivated viruses from a propagated and purified clinical strain of SARS-CoV-2. We observed that the virus particles are roughly spherical or moderately pleiomorphic. Although a small fraction of prefusion spikes are found, most spikes appear nail shaped, thus resembling a postfusion state, where the S1 protein of the spike has disassociated from S2. Cryoelectron tomography and subtomogram averaging of these spikes yielded a density map that closely matches the overall structure of the SARS-CoV postfusion spike and its corresponding glycosylation site. Our findings have major implications for SARS-CoV-2 vaccine design, especially those using inactivated viruses.


Asunto(s)
Betacoronavirus/ultraestructura , Desinfectantes/farmacología , Propiolactona/farmacología , Virión/efectos de los fármacos , Animales , Betacoronavirus/efectos de los fármacos , Betacoronavirus/inmunología , Vacunas contra la COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/ultraestructura , Vacunas de Productos Inactivados/inmunología , Células Vero , Vacunas Virales/inmunología , Virión/ultraestructura
13.
J Med Virol ; 92(10): 2087-2095, 2020 10.
Artículo en Inglés | MEDLINE | ID: covidwho-763177

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) is the causative agent of the coronavirus disease-2019 (COVID-19) pandemic. Coronaviruses enter cells via fusion of the viral envelope with the plasma membrane and/or via fusion of the viral envelope with endosomal membranes after virion endocytosis. The spike (S) glycoprotein is a major determinant of virus infectivity. Herein, we show that the transient expression of the SARS CoV-2 S glycoprotein in Vero cells caused extensive cell fusion (formation of syncytia) in comparison to limited cell fusion caused by the SARS S glycoprotein. Both S glycoproteins were detected intracellularly and on transfected Vero cell surfaces. These results are in agreement with published pathology observations of extensive syncytia formation in lung tissues of patients with COVID-19. These results suggest that SARS CoV-2 is able to spread from cell-to-cell much more efficiently than SARS effectively avoiding extracellular neutralizing antibodies. A systematic screening of several drugs including cardiac glycosides and kinase inhibitors and inhibitors of human immunodeficiency virus (HIV) entry revealed that only the FDA-approved HIV protease inhibitor, nelfinavir mesylate (Viracept) drastically inhibited S-n- and S-o-mediated cell fusion with complete inhibition at a 10-µM concentration. In-silico docking experiments suggested the possibility that nelfinavir may bind inside the S trimer structure, proximal to the S2 amino terminus directly inhibiting S-n- and S-o-mediated membrane fusion. Also, it is possible that nelfinavir may act to inhibit S proteolytic processing within cells. These results warrant further investigations of the potential of nelfinavir mesylate to inhibit virus spread at early times after SARS CoV-2 symptoms appear.


Asunto(s)
Fármacos Anti-VIH/farmacología , Fusión de Membrana/efectos de los fármacos , Nelfinavir/farmacología , SARS-CoV-2/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Animales , Fármacos Anti-VIH/química , Sitios de Unión , Fusión Celular , Chlorocebus aethiops , Células Gigantes/efectos de los fármacos , Células Gigantes/patología , Células Gigantes/virología , Humanos , Simulación del Acoplamiento Molecular , Nelfinavir/química , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Virión/efectos de los fármacos , Virión/patogenicidad , Virión/fisiología , Tratamiento Farmacológico de COVID-19
14.
Sci Rep ; 10(1): 4746, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: covidwho-740043

RESUMEN

Ginkgolic acids (GA) are alkylphenol constituents of the leaves and fruits of Ginkgo biloba. GA has shown pleiotropic effects in vitro, including: antitumor effects through inhibition of lipogenesis; decreased expression of invasion associated proteins through AMPK activation; and potential rescue of amyloid-ß (Aß) induced synaptic impairment. GA was also reported to have activity against Escherichia coli and Staphylococcus aureus. Several mechanisms for this activity have been suggested including: SUMOylation inhibition; blocking formation of the E1-SUMO intermediate; inhibition of fatty acid synthase; non-specific SIRT inhibition; and activation of protein phosphatase type-2C. Here we report that GA inhibits Herpes simplex virus type 1 (HSV-1) by inhibition of both fusion and viral protein synthesis. Additionally, we report that GA inhibits human cytomegalovirus (HCMV) genome replication and Zika virus (ZIKV) infection of normal human astrocytes (NHA). We show a broad spectrum of fusion inhibition by GA of all three classes of fusion proteins including HIV, Ebola virus (EBOV), influenza A virus (IAV) and Epstein Barr virus (EBV). In addition, we show inhibition of a non-enveloped adenovirus. Our experiments suggest that GA inhibits virion entry by blocking the initial fusion event. Data showing inhibition of HSV-1 and CMV replication, when GA is administered post-infection, suggest a possible secondary mechanism targeting protein and DNA synthesis. Thus, in light of the strong effect of GA on viral infection, even after the infection begins, it may potentially be used to treat acute infections (e.g. Coronavirus, EBOV, ZIKV, IAV and measles), and also topically for the successful treatment of active lesions (e.g. HSV-1, HSV-2 and varicella-zoster virus (VZV)).


Asunto(s)
Antivirales/farmacología , Infecciones por Virus ADN/metabolismo , Virus ADN/efectos de los fármacos , Infecciones por Virus ARN/metabolismo , Virus ARN/efectos de los fármacos , Salicilatos/farmacología , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Proteínas Virales de Fusión/antagonistas & inhibidores , Animales , Astrocitos/metabolismo , Chlorocebus aethiops , Replicación del ADN/efectos de los fármacos , Infecciones por Virus ADN/virología , Virus ADN/genética , ADN Viral/genética , Células HEK293 , Humanos , Infecciones por Virus ARN/virología , Virus ARN/genética , Células Vero , Proteínas del Envoltorio Viral/biosíntesis , Proteínas Virales de Fusión/biosíntesis , Virión/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
15.
Anal Bioanal Chem ; 412(28): 7685-7699, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-737989

RESUMEN

Pathogen-host cell interactions play an important role in many human infectious and inflammatory diseases. Several pathogens, including Escherichia coli (E. coli), Mycobacterium tuberculosis (M. tb), and even the recent 2019 novel coronavirus (2019-nCoV), can cause serious breathing and brain disorders, tissue injury and inflammation, leading to high rates of mortality and resulting in great loss to human physical and mental health as well as the global economy. These infectious diseases exploit the microbial and host factors to induce serious inflammatory and immunological symptoms. Thus the development of anti-inflammatory drugs targeting bacterial/viral infection is an urgent need. In previous studies, YojI-IFNAR2, YojI-IL10RA, YojI-NRP1,YojI-SIGLEC7, and YojI-MC4R membrane-protein interactions were found to mediate E. coli invasion of the blood-brain barrier (BBB), which activated the downstream anti-inflammatory proteins NACHT, LRR and PYD domains-containing protein 2(NLRP2), using a proteomic chip conjugated with cell immunofluorescence labeling. However, the studies of pathogen (bacteria/virus)-host cell interactions mediated by membrane protein interactions did not extend their principles to broad biomedical applications such as 2019-nCoV infectious disease therapy. The first part of this feature article presents in-depth analysis of the cross-talk of cellular anti-inflammatory transduction signaling among interferon membrane protein receptor II (IFNAR2), interleukin-10 receptor subunit alpha (IL-10RA), NLRP2 and [Ca2+]-dependent phospholipase A2 (PLA2G5), based on experimental results and important published studies, which lays a theoretical foundation for the high-throughput construction of the cytokine and virion solution chip. The paper then moves on to the construction of the novel GPCR recombinant herpes virion chip and virion nano-oscillators for profiling membrane protein functions, which drove the idea of constructing the new recombinant virion and cytokine liquid chips for HTS of leading drugs. Due to the different structural properties of GPCR, IFNAR2, ACE2 and Spike of 2019-nCoV, their ligands will either bind the extracellular domain of IFNAR2/ACE2/Spike or the specific loops of the GPCR on the envelope of the recombinant herpes virions to induce dynamic charge distribution changes that lead to the variable electron transition for detection. Taken together, the combined overview of two of the most innovative and exciting developments in the immunoinflammatory field provides new insight into high-throughput construction of ultrasensitive cytokine and virion liquid chips for HTS of anti-inflammatory drugs or clinical diagnosis and treatment of inflammatory diseases including infectious diseases, acute or chronic inflammation (acute gouty arthritis or rheumatoid arthritis), cardiovascular disease, atheromatosis, diabetes, obesity, tissue injury and tumors. It has significant value in the prevention and treatment of these serious and painful diseases. Graphical abstract.


Asunto(s)
Antiinflamatorios/farmacología , Antivirales/farmacología , Ensayos Analíticos de Alto Rendimiento/instrumentación , Dispositivos Laboratorio en un Chip , Pruebas de Sensibilidad Microbiana/instrumentación , Animales , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/inmunología , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/inmunología , Citocinas/inmunología , Descubrimiento de Drogas/instrumentación , Descubrimiento de Drogas/métodos , Diseño de Equipo , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/inmunología , Bibliotecas de Moléculas Pequeñas/farmacología , Virión/efectos de los fármacos , Virión/inmunología , Virosis/tratamiento farmacológico , Virosis/inmunología
16.
Infect Genet Evol ; 84: 104451, 2020 10.
Artículo en Inglés | MEDLINE | ID: covidwho-630854

RESUMEN

WHO has declared the outbreak of COVID-19 as a public health emergency of international concern. The ever-growing new cases have called for an urgent emergency for specific anti-COVID-19 drugs. Three structural proteins (Membrane, Envelope and Nucleocapsid protein) play an essential role in the assembly and formation of the infectious virion particles. Thus, the present study was designed to identify potential drug candidates from the unique collection of 548 anti-viral compounds (natural and synthetic anti-viral), which target SARS-CoV-2 structural proteins. High-end molecular docking analysis was performed to characterize the binding affinity of the selected drugs-the ligand, with the SARS-CoV-2 structural proteins, while high-level Simulation studies analyzed the stability of drug-protein interactions. The present study identified rutin, a bioflavonoid and the antibiotic, doxycycline, as the most potent inhibitor of SARS-CoV-2 envelope protein. Caffeic acid and ferulic acid were found to inhibit SARS-CoV-2 membrane protein while the anti-viral agent's simeprevir and grazoprevir showed a high binding affinity for nucleocapsid protein. All these compounds not only showed excellent pharmacokinetic properties, absorption, metabolism, minimal toxicity and bioavailability but were also remain stabilized at the active site of proteins during the MD simulation. Thus, the identified lead compounds may act as potential molecules for the development of effective drugs against SARS-CoV-2 by inhibiting the envelope formation, virion assembly and viral pathogenesis.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Proteínas de la Nucleocápside/química , Proteínas del Envoltorio Viral/química , Proteínas de la Matriz Viral/química , Virión/efectos de los fármacos , Amidas , Secuencia de Aminoácidos , Antivirales/química , Betacoronavirus/genética , Betacoronavirus/metabolismo , Sitios de Unión , COVID-19 , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacología , Carbamatos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacología , Ciclopropanos , Doxiciclina/química , Doxiciclina/farmacología , Expresión Génica , Humanos , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas de la Nucleocápside/antagonistas & inhibidores , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/metabolismo , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Quinoxalinas/química , Quinoxalinas/farmacología , Rutina/química , Rutina/farmacología , SARS-CoV-2 , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Simeprevir/química , Simeprevir/farmacología , Sulfonamidas , Termodinámica , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Proteínas de la Matriz Viral/antagonistas & inhibidores , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Virión/genética
17.
J Vet Sci ; 21(1): e12, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: covidwho-124741

RESUMEN

Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus that causes diarrhea in piglets. However, the biological characteristics of PDCoV are unclear. In this study, the hemagglutination (HA) abilities of two PDCoV strains (CH-01 and HNZK-04) were investigated. Our results showed that PDCoV has the ability to agglutinate rabbit erythrocytes after virion pretreatment with trypsin or neuraminidase. Additionally, the HA assay results showed a significant positive correlation with the infectious viral titer. Our results suggest that assessing the HA activity of PDCoV may be a useful diagnostic method for investigating and surveilling PDCoV infections.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Coronavirus/fisiología , Hemaglutinación , Enfermedades de los Porcinos/inmunología , Animales , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Diarrea/inmunología , Diarrea/veterinaria , Diarrea/virología , Eritrocitos/inmunología , Neuraminidasa/administración & dosificación , Conejos , Porcinos , Enfermedades de los Porcinos/virología , Tripsina/administración & dosificación , Virión/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA